
Reactor Kafka Reference Guide

Rajini Sivaram, Mark Pollack, Oleh Dokuka, Gary Russell

1.4.0-SNAPSHOT

1

Introduction

2

Chapter 1. Overview

1.1. Apache Kafka
Kafka is a scalable, high-performance distributed messaging engine. Low latency, high throughput
messaging capability combined with fault-tolerance have made Kafka a popular messaging service
as well as a powerful streaming platform for processing real-time streams of events.

Apache Kafka provides three main APIs:

• Producer/Consumer API to publish messages to Kafka topics and consume messages from Kafka
topics

• Connector API to pull data from existing data storage systems to Kafka or push data from Kafka
topics to other data systems

• Streams API for transforming and analyzing real-time streams of events published to Kafka

1.2. Project Reactor
Reactor is a highly optimized reactive library for building efficient, non-blocking applications on
the JVM based on the Reactive Streams Specification. Reactor based applications can sustain very
high throughput message rates and operate with a very low memory footprint, making it suitable
for building efficient event-driven applications using the microservices architecture.

Reactor implements two publishers Flux<T> and Mono<T>, both of which support non-blocking
back-pressure. This enables exchange of data between threads with well-defined memory usage,
avoiding unnecessary intermediate buffering or blocking.

1.3. Reactive API for Kafka
Reactor Kafka is a reactive API for Kafka based on Reactor and the Kafka Producer/Consumer API.
Reactor Kafka API enables messages to be published to Kafka and consumed from Kafka using
functional APIs with non-blocking back-pressure and very low overheads. This enables applications
using Reactor to use Kafka as a message bus or streaming platform and integrate with other
systems to provide an end-to-end reactive pipeline.

3

https://kafka.apache.org
https://projectreactor.io
https://github.com/reactive-streams/reactive-streams-jvm
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Mono.html
../api/index.html

Chapter 2. Motivation

2.1. Functional interface for Kafka
Reactor Kafka is a functional Java API for Kafka. For applications that are written in functional
style, this API enables Kafka interactions to be integrated easily without requiring non-functional
asynchronous produce or consume APIs to be incorporated into the application logic.

2.2. Non-blocking Back-pressure
The Reactor Kafka API benefits from non-blocking back-pressure provided by Reactor. For example,
in a pipeline, where messages received from an external source (e.g. an HTTP proxy) are published
to Kafka, back-pressure can be applied easily to the whole pipeline, limiting the number of
messages in-flight and controlling memory usage. Messages flow through the pipeline as they are
available, with Reactor taking care of limiting the flow rate to avoid overflow, keeping application
logic simple.

2.3. End-to-end Reactive Pipeline
The value proposition for Reactor Kafka is the efficient utilization of resources in applications with
multiple external interactions where Kafka is one of the external systems. End-to-end reactive
pipelines benefit from non-blocking back-pressure and efficient use of threads, enabling a large
number of concurrent requests to be processed efficiently. The optimizations provided by Project
Reactor enable development of reactive applications with very low overheads and predictable
capacity planning to deliver low-latency, high-throughput pipelines.

2.4. Comparisons with other Kafka APIs
Reactor Kafka is not intended to replace any of the existing Kafka APIs. Instead, it is aimed at
providing an alternative API for reactive event-driven applications.

2.4.1. Kafka Producer and Consumer APIs

For non-reactive applications, Kafka’s Producer/Consumer API provides a low latency interface to
publish messages to Kafka and consume messages from Kafka.

Applications using Kafka as a message bus using this API may consider switching to Reactor Kafka
if the application is implemented in a functional style.

2.4.2. Kafka Connect API

Kafka Connect provides a simple interface to migrate messages from an external data system (e.g. a
database) to one or more Kafka topics. Using existing connectors, this migration can be performed
without writing any new code.

Applications using the connector API may consider using Reactor Kafka if a reactive API is available

4

https://kafka.apache.org/documentation#connect

for the external data system and transformations are required for the data. When transformations
involve other I/O (e.g. to obtain additional information from another database), a reactive pipeline
benefits from end-to-end non-blocking back-pressure provided by Reactor. Messages from/to
different Kafka partitions can be processed in parallel, improving throughput by avoiding blocking
for I/O. The pull model in Reactor controls the pace of messages flowing through the pipeline,
enabling efficient use of threads and memory without the need for overflow handling in the
application.

2.4.3. Kafka Streams API

Kafka Streams provides lightweight APIs to build stream processing applications that process data
stored in Kafka using standard streaming concepts and transformation primitives. Using a simple
threading model, the streams API avoids the need for back-pressure. This model works well in cases
where transformations do not involve external interactions.

Reactor Kafka is useful for streams applications which process data from Kafka and use external
interactions (e.g. get additional data for records from a database) for transformations. In this case,
Reactor can provide end-to-end non-blocking back-pressure combined with better utilization of
resources if all external interactions use the reactive model.

5

https://kafka.apache.org/documentation#streams

Chapter 3. Getting Started

3.1. Requirements
You need Java JRE installed (Java 8 or later).

You need Apache Kafka installed (1.0.0 or later). Kafka can be downloaded from kafka.apache.org/
downloads.html. Note that the Apache Kafka client library used with Reactor Kafka should be 2.0.0
or later and the broker version should be 1.0.0 or higher.

3.2. Quick Start
This quick start tutorial sets up a single node Zookeeper and Kafka and runs the sample reactive
producer and consumer. Instructions to set up multi-broker clusters are available here.

3.2.1. Start Kafka

If you haven’t yet downloaded Kafka, download Kafka version 2.0.0 or higher.

Unzip the release and set KAFKA_DIR to the installation directory. For example,

> tar -zxf kafka_2.11-2.0.0.tgz -C /opt
> export KAFKA_DIR=/opt/kafka_2.11-2.0.0

Start a single-node Zookeeper instance using the Zookeeper installation included in the Kafka
download:

> $KAFKA_DIR/bin/zookeeper-server-start.sh $KAFKA_DIR/config/zookeeper.properties >
/tmp/zookeeper.log &

Start a single-node Kafka instance:

> $KAFKA_DIR/bin/kafka-server-start.sh $KAFKA_DIR/config/server.properties >
/tmp/kafka.log &

Create a Kafka topic:

> $KAFKA_DIR/bin/kafka-topics.sh --zookeeper localhost:2181 --create --replication
-factor 1 --partitions 2 --topic demo-topic
Created topic "demo-topic".

Check that Kafka topic was created successfully:

6

https://kafka.apache.org
https://kafka.apache.org/downloads.html
https://kafka.apache.org/downloads.html
https://kafka.apache.org/documentation#quickstart_multibroker
https://www.apache.org/dyn/closer.cgi?path=/kafka/2.0.0/kafka_2.11-2.0.0.tgz

> $KAFKA_DIR/bin/kafka-topics.sh --zookeeper localhost:2181 --describe
Topic: demo-topic PartitionCount:2 ReplicationFactor:1 Configs:
Topic: demo-topic Partition: 0 Leader: 0 Replicas: 0 Isr: 0
Topic: demo-topic Partition: 1 Leader: 0 Replicas: 0 Isr: 0

3.2.2. Run Reactor Kafka Samples

Download and build Reactor Kafka from github.com/reactor/reactor-kafka/.

> git clone https://github.com/reactor/reactor-kafka
> cd reactor-kafka
> ./gradlew jar

Set CLASSPATH for running reactor-kafka samples. CLASSPATH can be obtained using the classpath task
of the samples sub-project.

> export CLASSPATH=`./gradlew -q :reactor-kafka-samples:classpath`

Sample Producer

See github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/
samples/SampleProducer.java for sample producer code.

Run sample producer:

7

https://github.com/reactor/reactor-kafka/
https://github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/samples/SampleProducer.java
https://github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/samples/SampleProducer.java

> $KAFKA_DIR/bin/kafka-run-class.sh reactor.kafka.samples.SampleProducer
Message 2 sent successfully, topic-partition=demo-topic-1 offset=0
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 3 sent successfully, topic-partition=demo-topic-1 offset=1
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 4 sent successfully, topic-partition=demo-topic-1 offset=2
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 6 sent successfully, topic-partition=demo-topic-1 offset=3
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 7 sent successfully, topic-partition=demo-topic-1 offset=4
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 10 sent successfully, topic-partition=demo-topic-1 offset=5
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 11 sent successfully, topic-partition=demo-topic-1 offset=6
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 12 sent successfully, topic-partition=demo-topic-1 offset=7
timestamp=13:33:16:717 GMT 30 Nov 2016
Message 13 sent successfully, topic-partition=demo-topic-1 offset=8
timestamp=13:33:16:717 GMT 30 Nov 2016
Message 14 sent successfully, topic-partition=demo-topic-1 offset=9
timestamp=13:33:16:717 GMT 30 Nov 2016
Message 16 sent successfully, topic-partition=demo-topic-1 offset=10
timestamp=13:33:16:717 GMT 30 Nov 2016
Message 17 sent successfully, topic-partition=demo-topic-1 offset=11
timestamp=13:33:16:717 GMT 30 Nov 2016
Message 20 sent successfully, topic-partition=demo-topic-1 offset=12
timestamp=13:33:16:717 GMT 30 Nov 2016
Message 1 sent successfully, topic-partition=demo-topic-0 offset=0
timestamp=13:33:16:712 GMT 30 Nov 2016
Message 5 sent successfully, topic-partition=demo-topic-0 offset=1
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 8 sent successfully, topic-partition=demo-topic-0 offset=2
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 9 sent successfully, topic-partition=demo-topic-0 offset=3
timestamp=13:33:16:716 GMT 30 Nov 2016
Message 15 sent successfully, topic-partition=demo-topic-0 offset=4
timestamp=13:33:16:717 GMT 30 Nov 2016
Message 18 sent successfully, topic-partition=demo-topic-0 offset=5
timestamp=13:33:16:717 GMT 30 Nov 2016
Message 19 sent successfully, topic-partition=demo-topic-0 offset=6
timestamp=13:33:16:717 GMT 30 Nov 2016

The sample producer sends 20 messages to Kafka topic demo-topic using the default partitioner. The
partition and offset of each published message is output to console. As shown in the sample output
above, the order of results may be different from the order of messages published. Results are
delivered in order for each partition, but results from different partitions may be interleaved. In
the sample, message index is included as correlation metadata to match each result to its
corresponding message.

8

Sample Consumer

See github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/
samples/SampleConsumer.java for sample consumer code.

Run sample consumer:

> $KAFKA_DIR/bin/kafka-run-class.sh reactor.kafka.samples.SampleConsumer
Received message: topic-partition=demo-topic-1 offset=0 timestamp=13:33:16:716 GMT 30
Nov 2016 key=2 value=Message_2
Received message: topic-partition=demo-topic-1 offset=1 timestamp=13:33:16:716 GMT 30
Nov 2016 key=3 value=Message_3
Received message: topic-partition=demo-topic-1 offset=2 timestamp=13:33:16:716 GMT 30
Nov 2016 key=4 value=Message_4
Received message: topic-partition=demo-topic-1 offset=3 timestamp=13:33:16:716 GMT 30
Nov 2016 key=6 value=Message_6
Received message: topic-partition=demo-topic-1 offset=4 timestamp=13:33:16:716 GMT 30
Nov 2016 key=7 value=Message_7
Received message: topic-partition=demo-topic-1 offset=5 timestamp=13:33:16:716 GMT 30
Nov 2016 key=10 value=Message_10
Received message: topic-partition=demo-topic-1 offset=6 timestamp=13:33:16:716 GMT 30
Nov 2016 key=11 value=Message_11
Received message: topic-partition=demo-topic-1 offset=7 timestamp=13:33:16:717 GMT 30
Nov 2016 key=12 value=Message_12
Received message: topic-partition=demo-topic-1 offset=8 timestamp=13:33:16:717 GMT 30
Nov 2016 key=13 value=Message_13
Received message: topic-partition=demo-topic-1 offset=9 timestamp=13:33:16:717 GMT 30
Nov 2016 key=14 value=Message_14
Received message: topic-partition=demo-topic-1 offset=10 timestamp=13:33:16:717 GMT 30
Nov 2016 key=16 value=Message_16
Received message: topic-partition=demo-topic-1 offset=11 timestamp=13:33:16:717 GMT 30
Nov 2016 key=17 value=Message_17
Received message: topic-partition=demo-topic-1 offset=12 timestamp=13:33:16:717 GMT 30
Nov 2016 key=20 value=Message_20
Received message: topic-partition=demo-topic-0 offset=0 timestamp=13:33:16:712 GMT 30
Nov 2016 key=1 value=Message_1
Received message: topic-partition=demo-topic-0 offset=1 timestamp=13:33:16:716 GMT 30
Nov 2016 key=5 value=Message_5
Received message: topic-partition=demo-topic-0 offset=2 timestamp=13:33:16:716 GMT 30
Nov 2016 key=8 value=Message_8
Received message: topic-partition=demo-topic-0 offset=3 timestamp=13:33:16:716 GMT 30
Nov 2016 key=9 value=Message_9
Received message: topic-partition=demo-topic-0 offset=4 timestamp=13:33:16:717 GMT 30
Nov 2016 key=15 value=Message_15
Received message: topic-partition=demo-topic-0 offset=5 timestamp=13:33:16:717 GMT 30
Nov 2016 key=18 value=Message_18
Received message: topic-partition=demo-topic-0 offset=6 timestamp=13:33:16:717 GMT 30
Nov 2016 key=19 value=Message_19

The sample consumer consumes messages from topic demo-topic and outputs the messages to

9

https://github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/samples/SampleConsumer.java
https://github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/samples/SampleConsumer.java

console. The 20 messages published by the Producer sample should appear on the console. As
shown in the output above, messages are consumed in order for each partition, but messages from
different partitions may be interleaved.

3.2.3. Building Reactor Kafka Applications

To build your own application using the Reactor Kafka API, you need to include a dependency to
Reactor Kafka.

For gradle:

dependencies {
 compile "io.projectreactor.kafka:reactor-kafka:1.4.0-SNAPSHOT"
}

For maven:

<dependency>
 <groupId>io.projectreactor.kafka</groupId>
 <artifactId>reactor-kafka</artifactId>
 <version>1.4.0-SNAPSHOT</version>
</dependency>

10

Chapter 4. Additional Resources

4.1. Getting help
If you are having trouble with Reactor Kafka, we’d like to help.

Report bugs in Reactor Kafka at github.com/reactor/reactor-kafka/issues.

Reactor Kafka is open source and the code and documentation are available at github.com/reactor/
reactor-kafka.

4.2. Resources
• Reactor Kafka on github

• Apache Kafka

• Project Reactor

• Reactor Core

• Reactive Streams Specification

• Understanding Reactive types

• Lite Rx API Hands-on

• Reactor by Example

11

https://github.com/reactor/reactor-kafka/issues
https://github.com/reactor/reactor-kafka
https://github.com/reactor/reactor-kafka
https://github.com/reactor/reactor-kafka
https://kafka.apache.org/documentation.html
https://projectreactor.io/
https://github.com/reactor/reactor-core
https://github.com/reactive-streams/reactive-streams-jvm
https://spring.io/blog/2016/04/19/understanding-reactive-types
https://github.com/reactor/lite-rx-api-hands-on
https://www.infoq.com/articles/reactor-by-example

Reference Documentation

12

Chapter 5. Reactor Kafka API

5.1. Overview
This section describes the reactive API for producing and consuming messages using Apache Kafka.
There are two main interfaces in Reactor Kafka:

1. reactor.kafka.sender.KafkaSender for publishing messages to Kafka

2. reactor.kafka.receiver.KafkaReceiver for consuming messages from Kafka

Full API for Reactor Kafka is available in the javadocs.

The project uses Reactor Core to expose a "Reactive Streams" API.

5.2. Reactive Kafka Sender
Outbound messages are sent to Kafka using reactor.kafka.sender.KafkaSender. Senders are thread-
safe and can be shared across multiple threads to improve throughput. A KafkaSender is associated
with one KafkaProducer that is used to transport messages to Kafka.

A KafkaSender is created with an instance of sender configuration options
reactor.kafka.sender.SenderOptions. Changes made to SenderOptions after the creation of
KafkaSender will not be used by the KafkaSender. The properties of SenderOptions such as a list of
bootstrap Kafka brokers and serializers are passed down to the underlying KafkaProducer. The
properties may be configured on the SenderOptions instance at creation time or by using the setter
SenderOptions#producerProperty. Other configuration options for the reactive KafkaSender like the
maximum number of in-flight messages can also be configured before the KafkaSender instance is
created.

The generic types of SenderOptions<K, V> and KafkaSender<K, V> are the key and value types of
producer records published using the KafkaSender and corresponding serializers must be set on
the SenderOptions instance before the KafkaSender is created.

Map<String, Object> producerProps = new HashMap<>();
producerProps.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
producerProps.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, IntegerSerializer.class
);
producerProps.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.
class);

SenderOptions<Integer, String> senderOptions =
 SenderOptions.<Integer, String>create(producerProps) ①
 .maxInFlight(1024); ②

① Specify properties for underlying KafkaProducer

② Configure options for reactive KafkaSender

13

../api/index.html
https://github.com/reactor/reactor-core
https://github.com/reactive-streams/reactive-streams-jvm

Once the required options have been configured on the options instance, a new KafkaSender
instance can be created with the options already configured in senderOptions.

KafkaSender<Integer, String> sender = KafkaSender.create(senderOptions);

The KafkaSender is now ready to send messages to Kafka. The underlying KafkaProducer instance is
created lazily when the first message is ready to be sent. At this point, a KafkaSender instance has
been created, but no connections to Kafka have been made yet.

Let’s now create a sequence of messages to send to Kafka. Each outbound message to be sent to
Kafka is represented as a SenderRecord. A SenderRecord is a Kafka ProducerRecord with additional
correlation metadata for matching send results to records. ProducerRecord consists of a key/value
pair to send to Kafka and the name of the Kafka topic to send the message to. Producer records may
also optionally specify a partition to send the message to or use the configured partitioner to choose
a partition. Timestamp may also be optionally specified in the record and if not specified, the
current timestamp will be assigned by the Producer. The additional correlation metadata included
in SenderRecord is not sent to Kafka, but is included in the SendResult generated for the record when
the send operation completes or fails. Since results of sends to different partitions may be
interleaved, the correlation metadata enables results to be matched to their corresponding record.

A Flux<SenderRecord> of records is created for sending to Kafka. For beginners, Lite Rx API Hands-
on provides a hands-on tutorial on using the Reactor classes Flux and Mono.

Flux<SenderRecord<Integer, String, Integer>> outboundFlux =
 Flux.range(1, 10)
 .map(i -> SenderRecord.create(topic, partition, timestamp, i, "Message_" + i,
i));

The code segment above creates a sequence of messages to send to Kafka, using the message index
as correlation metadata in each SenderRecord. The outbound Flux can now be sent to Kafka using
the KafkaSender created earlier.

The code segment below sends the records to Kafka and prints out the response metadata received
from Kafka and the correlation metadata for each record. The final subscribe() in the code block
requests upstream to send the records to Kafka and the response metadata received from Kafka
flow downstream. As each result is received, the record metadata from Kafka along with the
correlation metadata identifying the record is printed out to console by the onNext handler. The
response from Kafka includes the partition to which the record was sent as well as the offset at the
which the record was appended, if available. When records are sent to multiple partitions,
responses arrive in order for each partition, but responses from different partitions may be
interleaved.

14

https://kafka.apache.org/0102/javadoc/org/apache/kafka/clients/producer/ProducerRecord.html
https://projectreactor.io/docs/core/release/api/reactor/core/publisher/Flux.html
https://github.com/reactor/lite-rx-api-hands-on
https://github.com/reactor/lite-rx-api-hands-on

sender.send(outboundFlux) ①
 .doOnError(e-> log.error("Send failed", e)) ②
 .doOnNext(r -> System.out.printf("Message #%d send response: %s\n", r
.correlationMetadata(), r.recordMetadata())) ③
 .subscribe(); ④

① Reactive send operation for the outbound Flux

② If Kafka send fails, log an error

③ Print metadata returned by Kafka and the message index in correlationMetadata()

④ Subscribe to trigger the actual flow of records from outboundFlux to Kafka.

See github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/
samples/SampleProducer.java for the full code listing of a sample producer.

5.2.1. Error handling

public SenderOptions<K, V> stopOnError(boolean stopOnError);

SenderOptions#stopOnError() specifies whether each send sequence should fail immediately if one
record could not be delivered to Kafka after the configured number of retries or wait until all
records have been processed. This can be used along with ProducerConfig#ACKS_CONFIG and
ProducerConfig#RETRIES_CONFIG to configure the required quality of service.

<T> Flux<SenderResult<T>> send(Publisher<SenderRecord<K, V, T>> outboundRecords);

If stopOnError is false, a success or error response is returned for each outgoing record. For error
responses, the exception from Kafka indicating the reason for send failure is set on SenderResult
and can be retrieved using SenderResult#exception(). The Flux fails with an error after attempting
to send all records published on outboundRecords. If outboundRecords is a non-terminating Flux, send
continues to send records published on this Flux until the result Flux is explicitly cancelled by the
user.

If stopOnError is true, a response is returned for the first failed send and the result Flux is
terminated immediately with an error. Since multiple outbound messages may be in-flight at any
time, it is possible that some messages are delivered successfully to Kafka after the first failure is
detected. SenderOptions#maxInFlight() option may be configured to limit the number of messages
in-flight at any time.

5.2.2. Send without result metadata

If individual results are not required for each send request, ProducerRecord can be sent to Kafka
without providing correlation metadata using the KafkaOutbound interface. KafkaOutbound is a fluent
interface that enables sends to be chained together.

15

https://github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/samples/SampleProducer.java
https://github.com/reactor/reactor-kafka/blob/main/reactor-kafka-samples/src/main/java/reactor/kafka/samples/SampleProducer.java

KafkaOutbound<K, V> send(Publisher<? extends ProducerRecord<K, V>> outboundRecords);

The send sequence is initiated by subscribing to the Mono obtained from KafkaOutbound#then(). The
returned Mono completes successfully if all the outbound records are delivered successfully. The
Mono terminates on the first send failure. If outboundRecords is a non-terminating Flux, records
continue to be sent to Kafka unless a send fails or the returned Mono is cancelled.

sender.createOutbound()
 .send(Flux.range(1, 10)
 .map(i -> new ProducerRecord<Integer, String>(topic, i, "Message_" +
i))) ①
 .then() ②
 .doOnError(e -> e.printStackTrace()) ③
 .doOnSuccess(s -> System.out.println("Sends succeeded")) ④
 .subscribe(); ⑤

① Create ProducerRecord Flux. Records are not wrapped in SenderRecord

② Get the Mono to subscribe to for starting the message flow

③ Error indicates failure to send one or more records

④ Success indicates all records were published, individual partitions or offsets not returned

⑤ Subscribe to request the actual sends

Multiple sends can be chained together using a sequence of sends on KafkaOutbound. When the
Mono returned from KafkaOutbound#then() is subscribed to, the sends are invoked in sequence in
the declaration order. The sequence is cancelled if any of the sends fail after the configured number
of retries.

sender.createOutbound()
 .send(flux1) ①
 .send(flux2)
 .send(flux3)
 .then() ②
 .doOnError(e -> e.printStackTrace()) ③
 .doOnSuccess(s -> System.out.println("Sends succeeded")) ④
 .subscribe(); ⑤

① Sends flux1, flux2 and flux3 in order

② Get the Mono to subscribe to for starting the message flow sequence

③ Error indicates failure to send one or more records from any of the sends in the chain

④ Success indicates successful send of all records from the whole chain

⑤ Subscribe to initiate the sequence of sends in the chain

Note that in all cases the retries configured for the KafkaProducer are attempted and failures
returned by the reactive KafkaSender indicate a failure to send after the configured number of retry

16

attempts. Retries can result in messages being delivered out of order. The producer property
ProducerConfig#MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION may be set to one to avoid re-ordering.

5.2.3. Threading model

KafkaProducer uses a separate network thread for sending requests and processing responses. To
ensure that the producer network thread is never blocked by applications while processing results,
KafkaSender delivers responses to applications on a separate scheduler. By default, this is a single
threaded pooled scheduler that is freed when no longer required. The scheduler can be overridden
if required, for instance, to use a parallel scheduler when the Kafka sends are part of a larger
pipeline. This is done on the SenderOptions instance before the KafkaSender instance is created
using:

public SenderOptions<K, V> scheduler(Scheduler scheduler);

5.2.4. Non-blocking back-pressure

The number of in-flight sends can be controlled using the maxInFlight option. Requests for more
elements from upstream are limited by the configured maxInFlight to ensure that the total number
of requests at any time for which responses are pending are limited. Along with buffer.memory and
max.block.ms options on KafkaProducer, maxInFlight enables control of memory and thread usage
when KafkaSender is used in a reactive pipeline. This option can be configured on SenderOptions
before the KafkaSender is created. Default value is 256. For small messages, a higher value will
improve throughput.

public SenderOptions<K, V> maxInFlight(int maxInFlight);

5.2.5. Closing the KafkaSender

When the KafkaSender is no longer required, the KafkaSender instance can be closed. The
underlying KafkaProducer is closed, closing all client connections and freeing all memory used by
the producer.

sender.close();

5.2.6. Access to the underlying KafkaProducer

Reactive applications may sometimes require access to the underlying producer instance to
perform actions that are not exposed by the KafkaSender interface. For example, an application
might need to know the number of partitions in a topic in order to choose the partition to send a
record to. Operations that are not provided directly by KafkaSender like send can be run on the
underlying KafkaProducer using KafkaSender#doOnProducer.

17

sender.doOnProducer(producer -> producer.partitionsFor(topic))
 .doOnSuccess(partitions -> System.out.println("Partitions " + partitions))
 .subscribe();

User provided methods are executed asynchronously. A Mono is returned by doOnProducer which
completes with the value returned by the user-provided function.

5.3. Reactive Kafka Receiver
Messages stored in Kafka topics are consumed using the reactive receiver
reactor.kafka.receiver.KafkaReceiver. Each instance of KafkaReceiver is associated with a single
instance of KafkaConsumer. KafkaReceiver is not thread-safe since the underlying KafkaConsumer
cannot be accessed concurrently by multiple threads.

A receiver is created with an instance of receiver configuration options
reactor.kafka.receiver.ReceiverOptions. Changes made to ReceiverOptions after the creation of the
receiver instance will not be used by the KafkaReceiver. The properties of ReceiverOptions such as a
list of bootstrap Kafka brokers and de-serializers are passed down to the underlying KafkaConsumer.
These properties may be configured on the ReceiverOptions instance at creation time or by using
the setter ReceiverOptions#consumerProperty. Other configuration options for the reactive
KafkaReceiver including subscription topics must be added to options before the KafkaReceiver
instance is created.

The generic types of ReceiverOptions<K, V> and KafkaReceiver<K, V> are the key and value types of
consumer records consumed using the receiver and corresponding de-serializers must be set on the
ReceiverOptions instance before the KafkaReceiver is created.

Map<String, Object> consumerProps = new HashMap<>();
consumerProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, bootstrapServers);
consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG, "sample-group");
consumerProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, IntegerDeserializer
.class);
consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer
.class);

ReceiverOptions<Integer, String> receiverOptions =
 ReceiverOptions.<Integer, String>create(consumerProps) ①
 .subscription(Collections.singleton(topic)); ②

① Specify properties to be provided to KafkaConsumer

② Topics to subscribe to

Once the required configuration options have been configured on the options instance, a new
KafkaReceiver instance can be created with these options to consume inbound messages. The code
block below creates a receiver instance and creates an inbound Flux for the receiver. The
underlying KafkaConsumer instance is created lazily later when the inbound Flux is subscribed to.

18

Flux<ReceiverRecord<Integer, String>> inboundFlux =
 KafkaReceiver.create(receiverOptions)
 .receive();

The inbound Kafka Flux is ready to be consumed. Each inbound message delivered by the Flux is
represented as a ReceiverRecord. Each receiver record is a ConsumerRecord returned by
KafkaConsumer along with a committable ReceiverOffset instance. The offset must be acknowledged
after the message is processed since unacknowledged offsets will not be committed. If commit
interval or commit batch size are configured, acknowledged offsets will be committed periodically.
Offsets may also be committed manually using ReceiverOffset#commit() if finer grained control of
commit operations is required.

inboundFlux.subscribe(r -> {
 System.out.printf("Received message: %s\n", r); ①
 r.receiverOffset().acknowledge(); ②
});

① Prints each consumer record from Kafka

② Acknowledges that the record has been processed so that the offset may be committed

5.3.1. Error handling

Since in reactive streams an error represents a terminal signal, any error signal emitted in the
inbound Flux will cause the subscription to be cancelled and effectively cause the consumer to shut
down. This can be mitigated by using the retry() operator (or retryWhen for finer grained control),
which will ensure that a new consumer is created:

Flux<ReceiverRecord<Integer, String>> inboundFlux =
 KafkaReceiver.create(receiverOptions)
 .receive()
 .retryWhen(Retry.backoff(3, Duration.of(10L, ChronoUnit.SECONDS)));

Any errors related to the event processing rather than the KafkaConsumer itself should be handled as
close to the source as possible and should ideally be prevented from propagating up to the inbound
Flux. This is to ensure that the KafkaConsumer doesn’t get restarted unnecessarily due to unrelated
application errors.

5.3.2. Subscribing to wildcard patterns

The example above subscribed to a single Kafka topic. The same API can be used to subscribe to
more than one topic by specifying multiple topics in the collection provided to
ReceiverOptions#subscription(). Subscription can also be made to a wildcard pattern by specifying
a pattern to subscribe to. Group management in KafkaConsumer dynamically updates topic
assignment when topics matching the pattern are created or deleted and assigns partitions of
matching topics to available consumer instances.

19

https://kafka.apache.org/0102/javadoc/org/apache/kafka/clients/consumer/ConsumerRecord.html

receiverOptions = receiverOptions.subscription(Pattern.compile("demo.*")); ①

① Consume records from all topics starting with "demo"

Changes to ReceiverOptions must be made before the receiver instance is created. Altering the
subscription deletes any existing subscriptions on the options instance.

5.3.3. Manual assignment of topic partitions

Partitions may be manually assigned to the receiver without using Kafka consumer group
management.

receiverOptions = receiverOptions.assignment(Collections.singleton(new TopicPartition
(topic, 0))); ①

① Consume from partition 0 of specified topic

Existing subscriptions and assignments on the options instance are deleted when a new assignment
is specified. Every receiver created from this options instance with manual assignment consumes
messages from all the specified partitions.

5.3.4. Controlling commit frequency

Commit frequency can be controlled using a combination of commit interval and commit batch
size. Commits are performed when either the interval or batch size is reached. One or both of these
options may be set on ReceiverOptions before the receiver instance is created. If commit interval is
configured, at least one commit is scheduled within that interval if any records were consumed. If
commit batch size is configured, a commit is scheduled when the configured number of records are
consumed and acknowledged.

Manual acknowledgement of consumed records after processing along with automatic commits
based on the configured commit frequency provides at-least-once delivery semantics. Messages are
re-delivered if the consuming application crashes after message was dispatched but before it was
processed and acknowledged. Only offsets explicitly acknowledged using
ReceiverOffset#acknowledge() are committed. Note that acknowledging an offset acknowledges all
previous offsets on the same partition. All acknowledged offsets are committed when partitions are
revoked during rebalance and when the receive Flux is terminated.

Applications which require fine-grained control over the timing of commit operations can disable
periodic commits and explicitly invoke ReceiverOffset#commit() when required to trigger a commit.
This commit is asynchronous by default, but the application many invoke Mono#block() on the
returned Mono to implement synchronous commits. Applications may batch commits by
acknowledging messages as they are consumed and invoking commit() periodically to commit
acknowledged offsets.

20

receiver.receive()
 .doOnNext(r -> {
 process(r);
 r.receiverOffset().commit().block();
 });

Note that committing an offset acknowledges and commits all previous offsets on that partition. All
acknowledged offsets are committed when partitions are revoked during rebalance and when the
receive Flux is terminated.

Starting with version 1.3.12, when a rebalance occurs due to group member changes, the rebalance
is delayed until records received from the previous poll have been processed. This is controlled by
two ReceiverOptions - maxDelayRebalance (default 60s) and commitIntervalDuringDelay (default
100ms). While the delay is in process, any offsets available for committal will be committed every
commitIntervalDuringDelay milliseconds. This allows orderly completion of processing the records
that have already been received. maxDelayRebalance should be less than max.poll.interval.ms to
avoid a forced rebalance due to a non-responsive consumer.

5.3.5. Out of Order Commits

Starting with version 1.3.8, commits can be performed out of order and the framework will defer
the commits as needed, until any "gaps" are filled. This removes the need for applications to keep
track of offsets and commit them in the right order. Deferring commits increases the likelihood of
duplicate deliveries if the application crashes while deferred commits are present.

To enable this feature, set the maxDeferredCommits property of ReceiverOptions. If the number of
deferred offset commits exceeds this value, the consumer is pause() d until the number of deferred
commits is reduced by the application acknowledging or commiting some of the "missing" offsets.

ReceiverOptions<Object, Object> options = ReceiverOptions.create()
 .maxDeferredCommits(100)
 .subscription(Collections.singletonList("someTopic"));

The number is an aggregate of deferred commits across all the assigned topics/partitions.

Leaving the property at its default 0 disables the feature and commits are performed whenever
called.

5.3.6. Auto-acknowledgement of batches of records

KafkaReceiver#receiveAutoAck returns a Flux of batches of records returned by each
KafkaConsumer#poll(). The records in each batch are automatically acknowledged when the Flux
corresponding to the batch terminates.

21

KafkaReceiver.create(receiverOptions)
 .receiveAutoAck()
 .concatMap(r -> r) ①
 .subscribe(r -> System.out.println("Received: " + r)); ②

① Concatenate in order

② Print out each consumer record received, no explicit ack required

The maximum number of records in each batch can be controlled using the KafkaConsumer property
MAX_POLL_RECORDS. This is used together with the fetch size and wait times configured on the
KafkaConsumer to control the amount of data fetched from Kafka brokers in each poll. Each batch
is returned as a Flux that is acknowledged after the Flux terminates. Acknowledged records are
committed periodically based on the configured commit interval and batch size. This mode is
simple to use since applications do not need to perform any acknowledge or commit actions. It is
efficient as well but can not be used for at-least-once delivery of messages.

5.3.7. Manual acknowledgement of batches of records

KafkaReceiver#receiveBatch returns a Flux of batches of records returned by each
KafkaConsumer#poll(). The records in each batch should be manually acknowledged or committed.

KafkaReceiver.create(receiverOptions)
 .receiveBatch()
 .concatMap(b -> b) ①
 .subscribe(r -> {
 System.out.println("Received message: " + r); ②
 r.receiverOffset().acknowledge(); ③
 });

① Concatenate in order

② Print out each consumer record received

③ Explicit ack for each message

Same as the KafkaReceiver#receiveAutoAck method, the maximum number of records in each batch
can be controlled using the KafkaConsumer property MAX_POLL_RECORDS. This is used together with the
fetch size and wait times configured on the KafkaConsumer to control the amount of data fetched
from Kafka brokers in each poll. But unlike the KafkaReceiver#receiveAutoAck, each batch is
returned as a Flux that should be acknowledged or committed using ReceiverOffset.

As the KafkaReceiver#receive method messages, each message in the batch is represented as a
ReceiverRecord which has a committable ReceiverOffset instance.

KafkaReceiver#receiveBatch combines the batch consumption mode of KafkaReceiver#receiveAutoAck
with the manual acknowledgement/commit mode of KafkaReceiver#receive. This batching mode is
efficient and is easy to use for at-least-once delivery of messages.

22

5.3.8. Disabling automatic commits

Applications which don’t require offset commits to Kafka may disable automatic commits by not
acknowledging any records consumed using KafkaReceiver#receive().

receiverOptions = ReceiverOptions.<Integer, String>create()
 .commitInterval(Duration.ZERO) ①
 .commitBatchSize(0); ②
KafkaReceiver.create(receiverOptions)
 .receive()
 .subscribe(r -> process(r)); ③

① Disable periodic commits

② Disable commits based on batch size

③ Process records, but don’t acknowledge

5.3.9. At-most-once delivery

Applications may disable automatic commits to avoid re-delivery of records.
ConsumerConfig#AUTO_OFFSET_RESET_CONFIG can be configured to "latest" to consume only new
records. But this could mean that an unpredictable number of records are not consumed if an
application fails and restarts.

KafkaReceiver#receiveAtmostOnce can be used to consume records with at-most-once semantics with
a configurable number of records-per-partition that may be lost if the application fails or crashes.
Offsets are committed synchronously before the corresponding record is dispatched. Records are
guaranteed not to be re-delivered even if the consuming application fails, but some records may not
be processed if an application fails after the commit before the records could be processed.

This mode is expensive since each record is committed individually and records are not delivered
until the commit operation succeeds. ReceiverOptions#atmostOnceCommitCommitAheadSize may be
configured to reduce the cost of commits and avoid blocking before dispatch if the offset of the
record has already been committed. By default, commit-ahead is disabled and at-most one record is
lost per-partition if an application crashes. If commit-ahead is configured, the maximum number of
records that may be lost per-partition is ReceiverOptions#atmostOnceCommitCommitAheadSize + 1.

KafkaReceiver.create(receiverOptions)
 .receiveAtmostOnce()
 .subscribe(r -> System.out.println("Received: " + r)); ①

① Process each consumer record, this record is not re-delivered if the processing fails

5.3.10. Partition assignment and revocation listeners

Applications can enable assignment and revocation listeners to perform any actions when
partitions are assigned or revoked from a consumer.

23

When group management is used, assignment listeners are invoked whenever partitions are
assigned to the consumer after a rebalance operation. When manual assignment is used,
assignment listeners are invoked when the consumer is started. Assignment listeners can be used to
seek to particular offsets in the assigned partitions so that messages are consumed from the
specified offset. When a user pauses topics/partitions before rebalancing, the behavior depends on
the value of pauseAllAfterRebalance. If it is set to false, the paused topics/partitions will remain
paused after the rebalance. However, if it is set to true, all assigned topics/partitions will be paused
after the rebalance.

When group management is used, revocation listeners are invoked whenever partitions are
revoked from a consumer after a rebalance operation. When manual assignment is used,
revocation listeners are invoked before the consumer is closed. Revocation listeners can be used to
commit processed offsets when manual commits are used. Acknowledged offsets are automatically
committed on revocation if automatic commits are enabled.

5.3.11. Controlling start offsets for consuming records

By default, receivers start consuming records from the last committed offset of each assigned
partition. If a committed offset is not available, the offset reset strategy
ConsumerConfig#AUTO_OFFSET_RESET_CONFIG configured for the KafkaConsumer is used to set the start
offset to the earliest or latest offset on the partition. Applications can override offsets by seeking to
new offsets in an assignment listener. Methods are provided on ReceiverPartition to seek to the
earliest, latest, a specific offset in the partition, or to a record with a timestamp later than a point in
time.

void seekToBeginning();
void seekToEnd();
void seek(long offset);
void seekToTimestamp(long timestamp);

For example, the following code block starts consuming messages from the latest offset.

receiverOptions = receiverOptions
 .addAssignListener(partitions -> partitions.forEach(p -> p.seekToEnd()))
①
 .subscription(Collections.singleton(topic));
KafkaReceiver.create(receiverOptions).receive().subscribe();

① Seek to the last offset in each assigned partition

Other methods are available on ReceiverPartition to determine the current position, the beginning
offset, and ending offset, at the time the partition is assigned.

long position();
Long beginningOffset();
Long endOffset();

24

5.3.12. Consumer lifecycle

Each KafkaReceiver instance is associated with a KafkaConsumer that is created when the inbound
Flux returned by one of the receive methods in KafkaReceiver is subscribed to. The consumer is kept
alive until the Flux completes. When the Flux completes, all acknowledged offsets are committed
and the underlying consumer is closed.

Only one receive operation may be active in a KafkaReceiver at any one time. Any of the receive
methods can be invoked after the receive Flux corresponding to the last receive is terminated.

5.4. Micrometer Metrics
To enable micrometer metrics for the underlying Kafka Consumers and Producers, add a
MicrometerConsumerListener to the ReceiverOptions or a MicrometerProducerListener to the
SenderOptions respectively.

5.5. Micrometer Observation
To enable Micrometer observation for produced and consumed records, add an
ObservationRegistry to the SenderOptions and ReceiverOptions using the withObservation() API. A
custom KafkaSenderObservationConvention (and KafkaReceiverObservationConvention) can also be set.
See their default implementations in the KafkaSenderObservation and KafkaReceiverObservation,
respectively. The DefaultKafkaSenderObservationConvention exposes two low-cardinality tags:
reactor.kafka.type = sender and reactor.kafka.client.id with the ProducerConfig.CLIENT_ID_CONFIG
option or identity hash code of the DefaultKafkaSender instance prefixed with the reactor-kafka-
sender-. The DefaultKafkaReceiverObservationConvention exposes two low-cardinality tags:
reactor.kafka.type = receiver and reactor.kafka.client.id with the
ConsumerConfig.CLIENT_ID_CONFIG option or identity hash code of the DefaultKafkaReceiver instance
prefixed with the reactor-kafka-receiver-.

If a PropagatingSenderTracingObservationHandler is configured on the ObservationRegistry, the
tracing information from the context around a producer record is stored into its headers before
publishing this record to the Kafka topic. If a PropagatingReceiverTracingObservationHandler is
configured on the ObservationRegistry, the tracing information from the mentioned Kafka record
headers, is restored into the context on the receiver side with a child span.

Because the reverse order nature of the Reactor context, the observation functionality on the
KafkaReceiver is limited just to a single trace logging message for each received record. Restored
tracing information will be correlated into logs if so configured for the logging system. If there are
requirements to continue an observation on the consumer side, the
KafkaReceiverObservation.RECEIVER_OBSERVATION API must be used manually in the record
processing operator:

25

KafkaReceiver.create(receiverOptions.subscription(List.of(topic)))
 .receive()
 .flatMap(record -> {
 Observation receiverObservation =
 KafkaReceiverObservation.RECEIVER_OBSERVATION.start(null,
 KafkaReceiverObservation
.DefaultKafkaReceiverObservationConvention.INSTANCE,
 () ->
 new KafkaRecordReceiverContext(
 record, "user.receiver", receiverOptions
.bootstrapServers()),
 observationRegistry);

 return Mono.just(record)
 .flatMap(TARGET_RECORD_HANDLER)
 .doOnTerminate(receiverObservation::stop)
 .doOnError(receiverObservation::error)
 .contextWrite(context -> context.put
(ObservationThreadLocalAccessor.KEY, receiverObservation));
 })
 .subscribe();

26

Chapter 6. Sample Scenarios
This section shows sample code segments for typical scenarios where Reactor Kafka API may be
used. Full code listing for these scenarios are included in the samples sub-project.

6.1. Sending records to Kafka
See KafkaSender API for details on the KafkaSender API for sending outbound records to Kafka.
The following code segment creates a simple pipeline that sends records to Kafka and processes the
responses. The outbound flow is triggered when the returned Flux is subscribed to.

KafkaSender.create(SenderOptions.<Integer, String>create(producerProps).maxInFlight
(512)) ①
 .send(outbound.map(r -> senderRecord(r)))
②
 .doOnNext(result -> processResponse(result))
③
 .doOnError(e -> processError(e));

① Create a sender with maximum 512 messages in-flight

② Send a sequence of sender records

③ Process send result when onNext is triggered

6.2. Replaying records from Kafka topics
See KafkaReceiver API for details on the KafkaReceiver API for consuming records from Kafka
topics. The following code segment creates a Flux that replays all records on a topic and commits
offsets after processing the messages. Manual acknowledgement provides at-least-once delivery
semantics.

ReceiverOptions<Integer, String> options =
 ReceiverOptions.<Integer, String>create(consumerProps)
 .consumerProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG,
"earliest") ①
 .commitBatchSize(10)
②
 .subscription(Collections.singleton("demo-topic"));
③
KafkaReceiver.create(options)
 .receive()
 .doOnNext(r -> {
 processRecord(r); ④
 r.receiverOffset().acknowledge(); ⑤
 })
 .subscribe();

27

https://github.com/reactor/reactor-kafka/tree/main/reactor-kafka-samples

① Start consuming from first available offset on each partition if committed offsets are not
available

② Commit every 10 acknowledged messages

③ Topics to consume from

④ Process consumer record from Kafka

⑤ Acknowledge that record has been consumed

6.3. Reactive pipeline with Kafka sink
The code segment below consumes messages from an external source, performs some
transformation and stores the output records in Kafka. Large number of retry attempts are
configured on the Kafka producer so that transient failures don’t impact the pipeline. Source
commits are performed only after records are successfully written to Kafka.

senderOptions = senderOptions
 .producerProperty(ProducerConfig.ACKS_CONFIG, "all") ①
 .producerProperty(ProducerConfig.RETRIES_CONFIG, Integer.MAX_VALUE) ②
 .maxInFlight(128); ③
KafkaSender.create(senderOptions)
 .send(source.flux().map(r -> transform(r))) ④
 .doOnError(e-> log.error("Send failed, terminating.", e)) ⑤
 .doOnNext(r -> source.commit(r.correlationMetadata())) ⑥
 .retryWhen(Retry.backoff(3, Duration.of(10L, ChronoUnit.SECONDS)));

① Send is acknowledged by Kafka for acks=all after message is delivered to all in-sync replicas

② Large number of retries in the producer to cope with transient failures in brokers

③ Low in-flight count to avoid filling up producer buffer and blocking the pipeline, default
stopOnError=true

④ Receive from external source, transform and send to Kafka

⑤ If a send fails, it indicates catastrophic error, fail the whole pipeline

⑥ Use correlation metadata in the sender record to commit source record

6.4. Reactive pipeline with Kafka source
The code segment below consumes records from Kafka topics, transforms the record and sends the
output to an external sink. Kafka consumer offsets are committed after records are successfully
output to sink.

28

receiverOptions = receiverOptions
 .commitInterval(Duration.ZERO) ①
 .commitBatchSize(0) ②
 .subscription(Pattern.compile(topics)); ③
KafkaReceiver.create(receiverOptions)
 .receive()
 .publishOn(aBoundedElasticScheduler) ④
 .concatMap(m -> sink.store(transform(m))
⑤
 .doOnSuccess(r -> m.receiverOffset().commit().block()))
⑥
 .retryWhen(Retry.backoff(3, Duration.of(10L, ChronoUnit.SECONDS)));

① Disable periodic commits

② Disable commits by batch size

③ Wildcard subscription

④ Cannot block the receiver thread

⑤ Tranform Kafka record and store in external sink

⑥ Synchronous commit after record is successfully delivered to sink

6.5. Reactive pipeline with Kafka source and sink
The code segment below consumes messages from Kafka topic, performs some transformation on
the incoming messages and stores the result in some Kafka topics. Manual acknowledgement mode
provides at-least-once semantics with messages acknowledged after the output records are
delivered to Kafka. Acknowledged offsets are committed periodically based on the configured
commit interval.

receiverOptions = receiverOptions
 .commitInterval(Duration.ofSeconds(10)) ①
 .subscription(Pattern.compile(topics));
sender.send(KafkaReceiver.create(receiverOptions)
 .receive()
 .map(m -> SenderRecord.create(transform(m.value()), m
.receiverOffset()))) ②
 .doOnNext(m -> m.correlationMetadata().acknowledge()); ③

① Configure interval for automatic commits

② Transform incoming record and create outbound record with transformed data in the payload
and inbound offset as correlation metadata

③ Acknowledge the inbound offset using the offset instance in correlation metadata after
outbound record is delivered to Kafka

29

6.6. At-most-once delivery
The code segment below demonstrates a flow with at-most once delivery. Producer does not wait
for acks and does not perform any retries. Messages that cannot be delivered to Kafka on the first
attempt are dropped. KafkaReceiver commits offsets before delivery to the application to ensure
that if the consumer restarts, messages are not redelivered. With replication factor 1 for topic
partitions, this code can be used for at-most-once delivery.

senderOptions = senderOptions
 .producerProperty(ProducerConfig.ACKS_CONFIG, "0") ①
 .producerProperty(ProducerConfig.RETRIES_CONFIG, "0") ②
 .stopOnError(false); ③
receiverOptions = receiverOptions
 .subscription(Collections.singleton(sourceTopic));
KafkaSender.create(senderOptions)
 .send(KafkaReceiver.create(receiverOptions)
 .receiveAtmostOnce() ④
 .map(cr -> SenderRecord.create(transform(cr.value()),
cr.offset())));

① Send with acks=0 completes when message is buffered locally, before it is delivered to Kafka
broker

② No retries in producer

③ Ignore any error and continue to send remaining records

④ At-most-once receive

6.7. Fan-out with Multiple Streams
The code segment below demonstrates fan-out with the same records processed in multiple
independent streams. Each stream is processed on a different thread and which transforms the
input record and stores the output in a Kafka topic.

Reactor’s EmitterProcessor is used to broadcast the input records from Kafka to multiple
subscribers.

30

https://projectreactor.io/docs/core/release/api/reactor/core/publisher/EmitterProcessor.html

EmitterProcessor<Person> processor = EmitterProcessor.create(); ①
BlockingSink<Person> incoming = processor.connectSink(); ②
inputRecords = KafkaReceiver.create(receiverOptions)
 .receive()
 .doOnNext(m -> incoming.emit(m.value())); ③

outputRecords1 = processor.publishOn(scheduler1).map(p -> process1(p)); ④
outputRecords2 = processor.publishOn(scheduler2).map(p -> process2(p)); ⑤

Flux.merge(sender.send(outputRecords1), sender.send(outputRecords2))
 .doOnSubscribe(s -> inputRecords.subscribe())
 .subscribe(); ⑥

① Create publish/subscribe EmitterProcessor for fan-out of Kafka inbound records

② Create BlockingSink to which records are emitted

③ Receive from Kafka and emit to BlockingSink

④ Consume records on a scheduler, process and generate output records to send to Kafka

⑤ Add another processor for the same input data on a different scheduler

⑥ Merge the streams and subscribe to start the flow

6.8. Concurrent Processing with Partition-Based
Ordering
The code segment below demonstrates a flow where messages are consumed from a Kafka topic,
processed by multiple threads and the results stored in another Kafka topic. Messages are grouped
by partition to guarantee ordering in message processing and commit operations. Messages from
each partition are processed on a single thread.

Scheduler scheduler = Schedulers.newElastic("sample", 60, true);
KafkaReceiver.create(receiverOptions)
 .receive()
 .groupBy(m -> m.receiverOffset().topicPartition()) ①
 .flatMap(partitionFlux ->
 partitionFlux.publishOn(scheduler)
 .map(r -> processRecord(partitionFlux.key(), r))
 .sample(Duration.ofMillis(5000)) ②
 .concatMap(offset -> offset.commit())); ③

① Group by partition to guarantee ordering

② Commit periodically

③ Commit in sequence using concatMap

31

6.9. Transactional send
The code segment below consumes messages from an external source, performs some
transformation and stores multiple transformed records in different Kafka topics within a
transaction.

senderOptions = senderOptions
 .producerProperty(ProducerConfig.TRANSACTIONAL_ID_CONFIG, "SampleTxn"); ①
KafkaSender.create(senderOptions)
 .sendTransactionally(source.map(r -> Flux.fromIterable(transform(r)))) ②
 .concatMap(r -> r)
 .doOnError(e-> log.error("Send failed, terminating.", e))
 .doOnNext(r -> log.debug("Send completed {}", r.correlationMetadata());

① Configure transactional id for producer

② Send multiple records generated from each source record within a transaction

6.10. Exactly-once delivery
The code segment below demonstrates a flow with exactly once delivery. Source records received
from a Kafka topic are transformed and sent to Kafka. Each batch of records is delivered to the
application in a new transaction. Offsets of the source records of each batch are automatically
committed within its transaction. Each transaction is committed by the application after the
transformed records of the batch are successfully delivered to the destination topic. Next batch of
records is delivered to the application in a new transaction after the current transaction is
committed.

senderOptions = senderOptions
 .producerProperty(ProducerConfig.TRANSACTIONAL_ID_CONFIG, "SampleTxn"); ①
receiverOptions = receiverOptions
 .consumerProperty(ConsumerConfig.ISOLATION_LEVEL_CONFIG, "read_committed") ②
 .subscription(Collections.singleton(sourceTopic));
sender = KafkaSender.create(senderOptions);
transactionManager = sender.transactionManager();
receiver.receiveExactlyOnce(transactionManager) ③
 .concatMap(f -> sender.send(f.map(r -> transform(r))) ④
 .concatWith(transactionManager.commit())) ⑤
 .onErrorResume(e -> transactionManager.abort().then(Mono.error(e))) ⑥

① Configure transactional id for producer

② Consume only committed messages

③ Receive exactly once within transactions, offsets are auto-committed when transaction is
committed

④ Send transformed records within the same transaction as source record offsets

⑤ Commit transaction after sends complete successfully

32

⑥ Abort transaction if send fails and propagate error

33

	Reactor Kafka Reference Guide
	Introduction
	Chapter 1. Overview
	1.1. Apache Kafka
	1.2. Project Reactor
	1.3. Reactive API for Kafka

	Chapter 2. Motivation
	2.1. Functional interface for Kafka
	2.2. Non-blocking Back-pressure
	2.3. End-to-end Reactive Pipeline
	2.4. Comparisons with other Kafka APIs

	Chapter 3. Getting Started
	3.1. Requirements
	3.2. Quick Start

	Chapter 4. Additional Resources
	4.1. Getting help
	4.2. Resources

	Reference Documentation
	Chapter 5. Reactor Kafka API
	5.1. Overview
	5.2. Reactive Kafka Sender
	5.3. Reactive Kafka Receiver
	5.4. Micrometer Metrics
	5.5. Micrometer Observation

	Chapter 6. Sample Scenarios
	6.1. Sending records to Kafka
	6.2. Replaying records from Kafka topics
	6.3. Reactive pipeline with Kafka sink
	6.4. Reactive pipeline with Kafka source
	6.5. Reactive pipeline with Kafka source and sink
	6.6. At-most-once delivery
	6.7. Fan-out with Multiple Streams
	6.8. Concurrent Processing with Partition-Based Ordering
	6.9. Transactional send
	6.10. Exactly-once delivery

